Guest guest Posted February 9, 2010 Report Share Posted February 9, 2010 _http://www.cdc.gov/eid/content/14/7/1074.htm_ (http://www.cdc.gov/eid/content/14/7/1074.htm) Transmission of Bartonella henselae by Ixodes ricinus Abstract Bartonella spp. are facultative intracellular bacteria associated with several emerging diseases in humans and animals. B. henselae causes cat-scratch disease and is increasingly associated with several other syndromes, particularly ocular infections and endocarditis. Cats are the main reservoir for B. henselae and the bacteria are transmitted to cats by cat fleas. However, new potential vectors are suspected of transmitting B. henselae, in particular, Ixodes ricinus, the most abundant ixodid tick that bites humans in western Europe. We used a membrane-feeding technique to infect I. ricinus with B. henselae and demonstrate transmission of B. henselae within I. ricinus across developmental stages, migration or multiplication of B. henselae in salivary glands after a second meal, and transmission of viable and infective B. henselae from ticks to blood. These results provide evidence that I. ricinus is a competent vector for B. henselae Bartonella spp. are facultative intracellular bacteria associated with several emerging diseases in humans and animals (1). Domestic animals and wildlife represent a large reservoir for Bartonella spp., and at least 10 species or subspecies have been reported to cause zoonotic infections. B. henselae causes cat-scratch disease, possibly the most common zoonosis acquired from domestic animals in industrialized countries and is becoming increasingly associated with other syndromes, particularly ocular infections and endocarditis (2–6). Although cat fleas are well-established vectors for B. henselae (7–10), transmission by other arthropods, in particular ticks, has been suggested (11–13). Ixodes ricinus is the most widespread and abundant ixodid tick in western Europe and is frequently associated with bites in humans. It is a vector of emerging zoonotic pathogens including Borrelia burgdorferi sensu lato (14), Anaplasma phagocytophilum (15), and Babesia spp. (16). Direct proof of transmission of Bartonella spp. by a tick was reported by Noguchi in 1926 (17), who described experimental transmission of B. bacilliformis (cause of Oroya fever) to monkeys by Dermacentor andersoni. In this study, ticks were allowed to feed on infected monkeys for 5 days. After removal, partially engorged ticks were placed on healthy monkeys in which disease then developed. This study showed that ticks could acquire and transmit the bacteria but did not demonstrate their vector competence or transtadial transmission throughout the tick's life cycle. Since this early study, the role of ticks in Bartonella spp. transmission has been strongly implied but never definitively demonstrated. Bartonella spp. DNA was detected in questing and engorged nymphs and adults Ixodes spp. collected in North America, Europe, and Asia (13,18–26). If one considers that ixodid ticks feed only once per stage, Bartonella spp. DNA in questing ticks suggests transtadial transmission of these bacteria Other observations support Bartonella spp. transmission by ticks. Co-occurrence of Bartonella spp. with known tick-borne pathogens such as B. burgdorferi sensu lato, A. phagocytophilum, or Babesia spp. is not a rare event in ticks and hosts (13,19,24,27). A study conducted in a veterinary hospital in the United States (California) demonstrated that all dogs with endocarditis and infected with Bartonella spp. were also seropositive for A. phagocytophilum (28). In humans, several case studies have reported patients with concurrent Bartonella seropositivity and detection of Bartonella spp. DNA in their blood, along with B. burgdorferi infection of the central nervous system after tick bites (11,29). Moreover, Bartonella spp. DNA has been detected in human blood cells after a tick bite (30), and 3 patients with B. henselae bacteremia who had no history of contact with cats but had sustained tick bites were reported in Texas (12). Finally, tick exposure was determined to be a risk factor associated with B. vinsonii seropositivity in dogs (31). Because Bartonella spp. are emerging human pathogens and Ixodes spp. can transmit a large spectrum of pathogens to humans, the capability of Ixodes spp. in transmitting human pathogenic Bartonella spp. should be determined. We used a membrane-feeding technique to infect I. ricinus with B. henselae, and investigated transtadial and transovarial transmission of viable and infective bacteria and putative transmission from tick saliva to blood during artificial blood meals Discussion This study demonstrated transmission of B. henselae by I. ricinus ticks across different developmental stages, migration and multiplication of viable and infective B. henselae in SGs after a second blood meal, and transmission of B. henselae from ticks to blood. These findings indicate that I. ricinus is a competent vector for B. henselae. Vector biologists and epidemiologists have suggested that ticks may play a role in transmission of Bartonella spp. (11,12,19,23,25,28,29). This suggestion was based on indirect data for detection of bacterial DNA in ticks (18,19,24), humans exposed to tick bites (30), or serologic evidence of co-infection of humans with pathogens known to be transmitted by ticks (11,36). Difficulties in rearing I. ricinus and lack of a rodent model for B. henselae infection may explain the absence of data demonstrating the role of this tick as a vector of B. henselae. Recent development of an artificial method suitable for feeding ticks (33) enabled us to study experimental infection of ticks with blood containing B. henselae, to monitor B. henselae through various tick stages, and to evaluate putative transmission of bacteria from the tick to blood. To select a tick population with the lowest Bartonella spp. DNA prevalence, we estimated the prevalence of Bartonella spp. DNA in questing I. ricinus collected in different areas in France. The lowest Bartonella spp. DNA prevalence was in Loire-Atlantique (19 and unpub. data). We thus used ticks collected in this area for our study. We detected B. henselae DNA in 100% of carcasses from nymphs and 67% of carcasses from adults fed on ovine blood containing B. henselae at their preceding stages. No B. henselae DNA was amplified in corresponding SGs in a nested PCR, which is more sensitive than amplification of the classic citrate synthase gene. This result demonstrated that bacteria could be ingested by I. ricinus larvae and nymphs during feeding on artificial skin and that bacterial DNA was maintained in the tick after molting. However, no or undetectable numbers reached the SGs. Although bacterial DNA was detected in eggs laid by females fed on blood containing B. henselae, larvae obtained from these eggs were PCR-negative for B. henselae. This finding suggests external contamination of eggs with DNA rather than transovarial persistence of bacteria. When molted nymphs and female ticks potentially contaminated with B. henselae at their previous developmental stage were refed on uninfected blood, viable B. henselae were detected in SGs after 84 h of engorgement. Two hypotheses could explain the absence of detectable bacterial DNA in SGs after an infected blood meal and molting, when it becomes detectable after a partial refeeding blood meal. The first hypothesis is that the 84-h refeeding period may act as a stimulus and enable migration of bacteria from the gut to SGs of the tick, as previously described for B. burgdorferi sensu lato (14). The second hypothesis is that this refeeding period may stimulate multiplication of bacteria already present in SGs, but at undetectable levels. More investigations are needed to validate one of these hypotheses. Bacteria located in SGs of nymphs and adults are infective because injection of 1 pair of infected SGs into cats induced high levels of bacteremia. Cats became bacteremic in the first 2 weeks after injection, as described for cat infection with B. henselae by fleas, and bacteremia levels were similar to those observed in cats infected by flea bites (7,8). Viable B. henselae in blood after 72 h of feeding of ticks with B. henselae –infected ticks demonstrated its transmission from the tick to the blood by mouthparts of the ticks. The duration of multiplication or migration described above would explain such a delay in bacterial transmission. Because our results have demonstrated competence of I. ricinus for transmission of B. henselae, cat models of B. henselae transmission by ticks are needed to confirm that cats can be infected with B. henselae by tick bites. Further investigations are also needed to evaluate the capacity of I. ricinus to transmit B. henselae to cats and humans. Such transmission could occur because cats, although not common hosts for I. ricinus, can be infested with this tick. In France, attached I. ricinus are commonly found on cats brought to veterinarians (J. Guillot, pers. comm.). In Great Britain, Ogden et al. (37) reported cats with woodland and moorland habitats as hosts for I. ricinus. Podsiadly et al. (38) reported B. henselae in cats and in I. ricinus removed from those cats in Poland. In conclusion, we demonstrated by using feeding on artificial skin that B. henselae, the cause of cat- scratch disease in humans, could be transmitted by ticks through saliva. Although further investigations are needed to clarify the epidemiology of such transmission, health authorities must take into account the possibility of bartonellosis in persons exposed to tick bites, and B. henselae must be identified as a tick-borne pathogen Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.