Guest guest Posted March 17, 2006 Report Share Posted March 17, 2006 Hello, firstly, thanks for the welcome. I'm pretty sure I will enjoy being here. I was reading the posts about vitamin D, so did some research and came across this: Like most vitamins, vitamin D may be obtained in the recommended amount with a well-balanced diet, including some enriched or fortified foods. In addition, the body manufactures vitamin D when exposed to sunshine, and it is recommended people get 10 to 15 minutes of sunshine 3 times a week. (http://adam.about.com/reports/000277.htm) Chemistry: There are two chemical forms of vitamin D, namely vitamin D2 (sometimes referred to as ergocalciferol) and vitamin D3 (sometimes referred to a cholecalciferol). The natural form of vitamin D for animals and man is vitamin D3 that is produced in their bodies from cholesterol and 7-dehydrocholesterol. An alternative vitamin D2 is derived from the yeast sterol ergosterol by chemical procedures. The molecular structure of vitamin D is closely allied to that of the classical steroid hormones, e.g. cortisol, estradiol, progesterone, aldosterone, and testosterone (1). All steroid hormones and vitamin D3 are chemically related to the well known sterol cholesterol. Cholesterol in animals and man is a precursor substance for all steroid hormones and as well vitamin D3. Since vitamin D3 is produced in the skin after exposure of 7- dehydrocholesterol to sunlight, the human does not have a requirement for vitamin D when sufficient sunlight is available. Man's tendency to wear clothes, to live in cities where tall buildings block adequate sunlight from reaching the ground, to live indoors, to use synthetic sunscreens that block ultraviolet rays, and to live in geographical regions of the world that do not receive adequate sunlight, all contribute to the inability of the skin to biosynthesize sufficient amounts of vitamin D3 (5). Thus, vitamin D3 does become an important nutritional factor in the absence of sunlight. It is known that a substantial proportion of the U.S. population is exposed to suboptimal levels of sunlight. This is particularly true during winter months (6;7). Under these conditions, vitamin D becomes a true vitamin which dictates that it must be supplied in the diet on a regular basis. Since vitamin D3 can be produced by the body and since it is retained for long periods of time by animal tissues, it has been difficult to determine with precision the minimum daily requirements for this fat soluble vitamin. The requirement for vitamin D3 is also known to be dependent on the age, sex, degree of exposure to the sun, season, and the amount of pigmentation in the skin (8). Animal products constitute the bulk source of vitamin D that occurs naturally in unfortified foods. Salt water fish such as herring, salmon, sardines, and fish liver oils are good sources of vitamin D3. Small quantities of vitamin D3 are also found in eggs, veal, beef, butter, and vegetable oils while plants, fruits, and nuts are extremely poor sources of vitamin D. In the United States, fortification of foods such as milk (both fresh and evaporated), margarine and butter, cereals, and chocolate mixes help in meeting the adequate intake (RDA) recommendations (11). Because only fluid milk is fortified with vitamin D, other dairy products (cheese, yogurt, etc.) only provide the vitamin that was produced by the animal itself. The commercial production of vitamin D3 is completely dependent on the availability of either 7-dehydrocholesterol or cholesterol. 7- Dehydrocholesterol can be obtained via organic solvent extraction of animal skins (cow, pig or sheep) followed by an extensive purification. Cholesterol typically is extracted from the lanolin of sheep wool and after thorough purification and crystallization can be converted via a laborious chemical synthesis into 7- dehydrocholesterol. It should be appreciated that once chemically pure, crystalline 7-dehydrocholesterol has been obtained, it is impossible to use any chemical or biological tests or procedures to determine the original source (sheep lanolin, pig skin, cow skin, etc.) of the cholesterol or 7-dehydrocholesterol. Next the crystalline 7-dehydrocholesterol is dissolved in an organic solvent and irradiated with ultraviolet light to carry out the transformation (similar to that which occurs in human and animal skin) to produce vitamin D3. This vitamin D3 is then purified and crystallized further before it is formulated for use in dairy milk and animal feed supplementation. The exact details of the chemical conversion of cholesterol to 7-dehydrocholesterol and the method of large-scale ultraviolet light conversion into vitamin D3 and subsequent purification are closely held topics for which there have been many patents issued (2).(http://vitamind.ucr.edu/milk.html) Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You are posting as a guest. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.